¹³C-NMR-UNTERSUCHUNGEN AN SUBSTITUIERTEN CYCLOALKENEN

I. TRIMETHYLSILYLENOLETHER

E. FRIEDRICH, H.-O. KALINOWSKI und W. LUTZ*

Institut für Organische Chemie der Justus Liebig-Universität, Heinrich-Buff-Ring 58, D-6300 Lahn-Gießen, West Germany

(Received in Germany 30 April 1979)

Znsammenfassung—Es werden die ¹³C-NMR-spektroskopischen Daten von cyclischen Silylenolethern 1a-i im Hinblick auf Elektronenverteilung im Doppelbindungssystem, Konformation des Trimethylsilyloxygrestes sowie Konfiguration der Doppelbindung bei grösseren Ringen diskutiert.

Abstract—The ¹³C-NMR spectra of the cyclic silvenolethers **1a-i** are discussed with regard to the electron density within the carbon ring skeleton, conformation of the trimethylsilyloxy substituent and configuration of the double bond in higher membered ringsystems.

O-silylierte Enolate des Typs 1 haben in den letzten Jahren eine beträchtliche Bedeutung in der präparativen Organischen Chemie gewonnen.¹ Im Zusammenhang mit Untersuchungen über die sensibilisierte Photooxy-genierung^{2,3} von cyclischen Silylenolethern (1, R₁, R₂ = $-(CH_2)-_{n-2}$) interessierten wir uns für die ¹³C-NMR-Spektren dieser Verbindungsklasse unter folgenden Gesichtspunkten:

I. Identifizierung und Charakterisierung (¹³C-spektroskopische Daten dieser Verbindungsklasse liegen mit Ausnahme des 1-Trimethylsilyloxycyclohexens⁴ nicht vor).

II. Identifizierung der E/Z-Isomeren, die bei den grösseren Ringen ($n \ge 10$) auftreten.

III. Elektronische Verhältnisse der Silylenolethergruppierung gemäss der Formulierung:

Die ¹³C-NMR-spektroskopischen Daten der cyclischen Silylenolether (n = 4 - 12), die nach bekannten Präparationsvorschriften hergestellt wurden,^{3,5} sind in

Tabelle 1 zusammengestellt. Die Zuordnung der olefinischen C-Atome bereitet naturgemäss keine Schwierigkeiten, ebenso dürfte die Zuordnung der zur Doppelbindung α -ständigen CH₂-Gruppen gesichert sein, wenn man ihre relative Lage zur Silyloxygruppe hierbei berücksichtigt. Die Zuordnung der restlichen CH₂-Gruppen ist zumindest bei den grösseren Ringen (n \geq 7) nicht gesichert. Aus der Tabelle 1 geht hervor, dass man bei den grossen Ringen (n \geq 10) anhand der ¹³C-Daten eindeutig zwischen den E- und Z-Isomeren unterscheiden kann.

Die Zuordnung von E- und Z-Konfiguration läss sich aus der Tendenz der Signallagen der olefinischen C-Atome und α -CH₂-Gruppen für die gesamte Reihe der cyclischen Silylenolether (n = 4-12), wie sie in Abb. 1 dargestellt ist, ableiten. Im E-Isomeren beträgt die Differenz der chemischen Verschiebungen der sp²-C-Atome ca. 43 ppm, während sie im Z-Isomeren nur ca. 38 ppm ausmacht, wobei auffällig ist, dass hierbei das C₁-Atom zu hohem Feld (ca. 2 ppm), das C₂-Atom zu

			Tabel	le 1. ¹³ C-}	IMR-Dat	en der 1-	Trimethy	lsilyloxyc	sychoalker	l el				
OSI	Me,		(ch	emische	Versch	tebung)								
-{						Š	(wdd)							
(CH ₂);		1	8	ŝ	4	Ω.	9	۲-	89	æ	10	11	12	OSIMe ₃
1a n = 4		148.48	102.15	20.01	34 39	}	1							0.10
ە 10		155.26	101.39	29.08	21.57	33 89								0.00
9 04		150.61	103.27	24.16	23.50	22.79	30, 31							0.43
۲ ۳		156.42	107.46	31.94	28.25	25.60	25.60	35, 90						0.35
со в о н		153.19	104.63	28.05	26.60	25.87	31.25	25.65	31.39					0.47
6 • •		152.77	106.47	27.76	25.82	25.82	25.82	25 37	24.74	30.72				0.52
10	(E)	151.16	107.06	28.15	26.72	26.39	25.60	24.87	21.05	21.05	28.95			0.54
	(Z)	149.67	110.79	27.39							37.56			
h 11	(E)	151.01	108 72	28.54								30.38		
•	(Z)	149.70	110.79	27.17	26.93	26, 93	26.69	26, 55	26.45	25.77	24.36	37.94		0, 25
12	(<u>a</u>)	151.64	108.22	27,76	25.00	25.00	24.76	24.56	24.32	24.32	22.72	22.58	28. 35	0.54
1	(Z)	149 41	111.13	26. 75	26.55	26.45	26.11	26 11	25.18	24.98	24.98	23.89	36.34	0.58
OSiMe ₃	(E)		99, 50	153, 56	24.45									0.72
-) ~~~	(Z)		100.66	152.79	29, 93									0. 72
I														

.

Abb. 1. ¹³C-NMR-Daten der 1-Trimethylsilyloxycycloalkene 1 in Abhängigkeit von der Ringgrösse.

tiefem Feld (ca. 3 ppm) verschoben wird. Gleichzeitig erfahren die α -CH₂-Gruppen beim Übergang vom E-zum eine Z-Isomeren Hochfeld- (C_3) bzw. Tieffeldverschiebung (C_n) (siehe Tabelle 1). Eine Erklärung für diesen Sachverhalt lässt sich aus der geringen Beteiligung der mesomeren Grenzformel 1' ableiten. Man kann davon ausgehen, dass im Z-Isomeren durch sterische Wechselwirkung der Trimethylsilyloxygruppe mit der benachbarten CH2-Gruppe der Anteil der Grenzform 1' im Vergleich zum E-Isomeren zurückgedrängt wird (höhere Beteiligung der gauche Konformation).⁶ Die entgegengesetzte Verschiebung der Signale für die aständigen CH2-Gruppen (C3, Cn) läss sich durch die Annahme einer alternierenden Polarität⁷ im Ringskelett erklären, die durch Zunahme der polaren Grenzform 1' beim E-Isomeren verstärkt wird. Die relativ grosse Tieffeldverschiebung von C_n bei den Z-konfigurierten Silylenolethern geht möglicherweise zusätzlich auf die Aufhebung der intramolekularen sterischen Wechselwirkung zwischen den zur Doppelbindung benachbarten Methylengruppen zurück, während dies für C3 durch die hinzukommende Wechselwirkung mit der Trimethylsilyloxygruppe offenbar kompensiert wird. Die Bestätigung der getroffenen E/Z-Zuordnung für die Verbindungen 1g-i läss sich auch aus anderen spektroskopischen Daten ('H-NMR, IR) ableiten. Die entsprechenden Daten sind in Tabelle 2 zusammengestellt.

Man beobachtet beim Übergang vom Z- zum E-Isomeren entsprechend der Hochfeldverschiebung des C_2 -Atoms eine Hochfeldverschiebung des Vinyl-H-Signals. Gleichzeitig erkennt man im IR-Spektrum eine Verschiebung der C=C-Valenzschwingung für die Z-Isomeren zu höheren Wellenzahlen, die einem erhöhten Doppelbindungsanteil relativ zum E-Isomeren entspricht. Hierbie ist zu beachten, dass die von H. O. House⁵ durch ¹H-NMR-Spektren bei den acyclischen Silyenolethern getroffene Konfigurationszuordung sich nicht auf die

Tabelle 2. ¹H-NMR- und IR-Daten der 1-Trimethylsilyloxycycloalkene 1

_	OSIMe, ICH2In-2	¹ <u>H-NMR:</u> d _H (in CCl ₄)	(vinyl (in C ₆ D ₆)	<u>IR:</u> ∨C≂C [cm ⁻¹]
14	n = 4	4.52		1613-40
þ	5	4.49		1640-55
ç	6	4.71		1666
₫	7	4.93		1658
ŝ	8	4.67		1660
£	9	4.62		1663
E	10 (E)	4.49		1660
	(z)	-		-
ħ	11 (E)	4.43	4.55	-
	(Z)	4.58	4.63	1668
i	12 (E)	4.40	4.50	1656
	(Z)	4.47	4.53	1670
	05ıMe, (E)		4.63	(1665)
	(Z)		4.53	1676

cyclischen Derivate übertragen lässt (siehe Verbindung 2, Tabelle 1, 2). Entsprechende Beobachtungen sind für cyclische⁸ und acyclische⁹ Alkylenolether beschrieben. In diesem Zusammenhang sei auf eine kürzlich erschienene Arbeit¹⁰ verwiesen, bei der für das 1-i entsprechende *tert*-Butyldimethylsilyloxycyclododecen eine umgekehrte E/Z-Zuordnung angegeben wird, wobei lediglich ¹H-NMR-Daten als Kriterium herangezogen werden, und die Zuordnung in Analogie zu den acyclischen Derivaten getroffen wurde.

In der Tabelle 3 sind die $\Delta\delta$ -Werte ($\delta_{C_1} - \delta_{C_2}$) sowie die ¹³C-H-Kopplungskonstanten für das C₂-Atom zus-

	OSiMe ₃		(Kopplungsk	onstanten [Hz]	, Differenz der cher	mischen Verschiebungen
(CH ₂) _{n-2}		¹ J ₁₃ с-н	¹ J ₁₃ C-H (Cycloalken)	۵ گ _{د1} , с ₂	$\Delta \delta_{C_2 - C_1}$ (Cycloalken)
<u>1</u> 2	n = 4		171 2	170	46 33	- 35.0
₽	5		162 3	161 6	53,87	- 29.4
ç	6		151.8	158.4	47.34	- 24.1
đ	7		149 1	156 2	48.96	- 25.2
ę	8		147 7	156.0	48.56	- 25.8
ſ	9		149.0		46.30	
g	10	(E)	149 4		44.10	
		(Z)	-		38, 88	
þ	11	(E)	149.0		42.29	
-		(Z)	152 6		38 91	
1	12	(E)	150.4		43.42	- 22.4
-		(Z)	153.6		38.28	
ູ່ໃ	SIMe3	(E)	150.4	Δa	Sc. c: 54.06	
~	\sim	(Z)	153,9		^{3, 2} 52, 13	

Tabelle 3. ¹³C-NMR-Daten der 1-Trimethylsilyloxycycloalkene 1

ammen mit bekannten Kopplungskonstanten¹¹ für die unsubstituierten Cycloalkene aufgeführt.

Die ¹³C-H-Kopplungskonstanten zeigen ebenfalls einen signifikanten Unterschied für das Z- bzw. E-Isomere (s. Tabelle 3). Beim Vergleich mit den ¹³C-H-Kopplungskonstanten der unsubstituierten Cycloalkene fällt auf, dass nur bei den Silylenolethern 1a und 1b (n = 4 bzw. 5) Übereinstimmung besteht, während bei Silylenolethern $n \ge 6$ etwa um 7 Hz kleinere Werte gemessen werden. Eine mögliche Erklärung für diesen Befund könnte in der unterschiedlichen Bevorzugung von s-cis, s-trans bzw. gauche-Konformationen zu sehen sein.

Die Differenz der chemischen Verschiebung $(\Delta \delta)$ der olefinischen C-Atome zeigt eine starke Polarisierung im Sinne der Grenzform 1' an. Die Grösse der Aufspaltung nimmt mit zunehmender Ringgrösse bzw. beim Übergang vom E- zum Z-Isomeren ab. Diese Abnahme von $\Delta \delta$ mit der Ringgrösse lässt sich wie die Abhängigkeit von Eund Z-Form (s. o.) auf eine starke Verdrillung des Silyloxyrestes zurückführen. Geht man davon aus, dass die Differenz der chemischen Verschiebung zwischen Silylenolether und dem unsubstituierten Cycloalken (siehe Tabelle 3) ($\Delta \delta_{C_2-C_1}$ (Cycloalken)) ein Mass für die elektronische Veränderung der Umgebung des C-2-Atoms gegenüber dem Cycloalken ist, so lässt sich abschätzen (le \triangleq 220 ppm),^{7,12} dass etwa 10% Elektronenüberschuss an diesem C-Atom vorhanden ist. Im übrigen ordnet sich diese Verbindungsklasse gut in die folgende Reihe von Cycloalkenderivaten mit zunehmender Elektronendonorfähigkeit des Substituenten ein.¹³

EXPERIMENTELLER TEIL

Herstellung der Silylenolether (siehe Lit.⁵). NMR-Gerät: Varian XL 100/12, 8 K Datenspeicher Aufnahmebedingungen: Raumtemp., C₆D₆ als Lösungsmittel, da sich Silylenolether in CDCl₃ zersetzen bzw. E/Z-Isomerisierung eingehen, TMS als interner Standard.

LITERATUR

¹J. K. Rasmussen, Synthesis, 91 (1977); E. W. Colvin, Chem. Soc. Rev. 7, 15 (1978).

1055

- ²E. Friedrich, Teil der Dissertation, Univ. Giessen 1979; vorläufige Mitteilung: E. Friedrich und W. Lutz, Angew. Chem. 89, 426 (1977).
- ³E. Friedrich und W. Lutz, Chem. Ber. in Vorbereitung.
- O. House, A. V. Prabhu and W. V. Phillips, J. Org. Chem.
 41, 1209 (1976); K. M. Rapp, T. Burgemeister und J. Daub, Tetrahedron Letters 2685 (1978).
- ⁵H. O. House, L. J. Czuba, M. Gall und H. D. Olmstead, J. Org. Chem. 34, 2324 (1969).
- ⁶E. Taskinen, *Tetrahedron* 34, 425 (1978) und dort zitierte Literatur.
- ⁷F. W. Wehrli und T. Wirthlin, Interpretation of Carbon-13 NMR Spectra, S. 27 ff., Heyden, London 1978.
- ⁸R. A. Wohl, Synthesis, 38 (1974); K. Schank und W. Pack,

Chem. Ber. 102, 1892 (1969); W. E. Parham und R. J. Sperley, J. Org. Chem. 32, 926 (1967).

- ⁹H. O. House und V. Kramar, *Ibid.* 28, 3362 (1963); W. Kirmse und M. Buschhoff, *Chem. Ber.* 109, 1491 (1967); G. Benndorf, H. G. Hauthal, R. Holm und W. Höbold, *J. Prakt, Chem.* 311, 586 (1969).
- ¹⁰R. D. Clark und K. G. Untch, J. Org. Chem. 44, 248 (1979).
- ¹¹H. Günther und G. Jikeli, Chem. Rev. 77, 599 (1977); E. Breitmaier und W. Voelter, ¹³C-NMR-Spectroscopy, S. 125 ff., Verlag Chemie, Weinheim (1974).
- ¹²M. J. Loots, L. R. Weingarten und R. H. Levin, J. Am. Chem. Soc. 98, 4571 (1976).
- ¹³H.-O. Kalinowski, unveröffentlichte Messergebnisse.